Abstract

The synthesis and properties are reported of a new Fe(7) cluster obtained from the reaction of ferrocene-1,1'-dicarboxylic acid (fdcH(2)) with FeCl(2)·4H(2)O in MeOH under ambient light conditions. The compound is the mixed-anion salt [Fe(7)O(3)(OMe)(fdc)(6)(MeOH)(3)][FeCl(4)]Cl(2) (1; 8Fe(III)), containing six (fdc(n-)) groups as peripheral ligands. The cation of 1 has virtual C(3) symmetry and contains a central [Fe(4)(μ(3)-O)(3)(μ(3)-OMe)](5+) cubane unit whose three oxide ions each become μ(4) by attaching to a fourth Fe atom outside the cubane. The resulting [Fe(7)(μ(3)-O(3))(μ(3)-OMe)](14+) core is surrounded by six fdc(n-) (n = 1, 2) groups, which divide into two sets by virtual symmetry. The blue color of the complex suggested that some of these ligands are in their oxidized fdc(-) ferricenium (Fe(III)) state, and various data point to there being one fdc(-) ligand in the compound, the initial example of the group acting as a ligand in inorganic chemistry. Variable-temperature, solid-state DC and AC susceptibility measurements reveal the cation to be antiferromagnetically coupled, as expected for high-spin Fe(III), and to have an S = 2 ground state, consistent with an S = (5)/(2) Fe(7) inner core coupled antiferromagnetically to the one paramagnetic fdc(-) (S = (1)/(2)) ligand. Complex 1 displays multiple reductions and oxidations when investigated by electrochemistry in MeCN. (57)Fe Mössbauer spectroscopy supports the presence of only five fdc(2-) ligands, but cannot resolve the signals from the various Fe(III) sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call