Abstract

The iron storage molecule, ferritin, consists of an iron core surrounded by a shell of 24 protein subunits, which, in mammals, are of two types, H and L. Prior to storage of iron as a hydrous ferric oxide within the protein shell, Fe(II) is catalytically oxidized at dinuclear centers within H chains. When 48 Fe(II) atoms/molecule were added to 1 microM recombinant human H chain apoferritin (apo-HuHF), in 0.1 M Mes (pH 6.5), oxidation was 80% complete within about 0.2 s while 99% of the Fe(II) was oxidized within 10 s. A broad visible absorption band (400-800 nm, with a maximum at 650 nm) appeared during the fast phase of Fe(II) oxidation. It reached a plateau at 0.2-0.3 s and then declined while Fe(II) oxidation proceeded to completion and absorbance in the near-UV (300-400 nm) increased. The transient visible species was not observed when Tyr-34 was replaced by phenylalanine or when other conserved amino acids at the ferroxidase centers were substituted by residues which are unable to bind iron or which alter the charge balance. When a second increment of 48 iron atoms was added, 10 min after the first, the visible absorbance was absent and the rate of oxidation slower. Restoration of full oxidative activity took over 24 h. The data indicate that the fast oxidation of Fe(II) by apo-HuHF and the transient visible absorbance associated with it are due to Fe(II) oxidation at the ferroxidase centers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.