Abstract

BackgroundPerturbations in iron homeostasis have been reported to be associated with irreversible liver injury in chronic liver disease (CLD). However, it is not clear whether liver dysfunction per se underlies such dysregulation or whether other factors also contribute to it. This study attempted to examine the issues involved. MethodsPatients diagnosed to have chronic liver disease (n = 63), who underwent a medically-indicated upper gastrointestinal endoscopy, were the subjects of this study. Patients with dyspepsia, who underwent such a procedure, and were found to have no endoscopic abnormalities, were used as control subjects (n = 49). Duodenal mucosal samples were obtained to study mRNA and protein levels of duodenal proteins involved in iron absorption. A blood sample was also obtained for estimation of hematological, iron-related, inflammatory and liver function-related parameters. ResultsPatients with CLD had impaired liver function, anemia of inflammation and lower serum levels of hepcidin than control subjects. Gene (mRNA) expression levels of duodenal ferroportin and duodenal cytochrome b (proteins involved in iron absorption) were decreased, while that of divalent metal transporter–1 (DMT-1) was unchanged. Protein expression of DMT-1 was, however, decreased while that of ferroportin was unchanged. In the CLD group, serum hepcidin was predicted independently by serum ferritin and hemoglobin, but not by C-reactive protein (a marker of inflammation). CLD patients with serum ferritin greater than 300 μg/dL had significantly greater liver dysfunction (as indicated by significantly higher serum concentrations of bilirubin, AST and ALT, and MELD scores), higher serum concentrations of CRP and hepcidin, and higher ferroportin protein expression, than those with serum ferritin ≤ 300 μg/dL. ConclusionsIn patients with CLD, anemia of inflammation and low serum hepcidin levels were found to paradoxically co-exist. Expression of duodenal proteins involved in iron absorption were either decreased or unaltered in these patients. The hepcidin response to higher body iron levels and/or inflammation appeared to be functional in these patients, despite the presence of liver disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call