Abstract

BackgroundAlthough excess iron induces oxidative stress in the liver, it is unclear whether it directly activates the hepatic stellate cells (HSC). Materials and MethodsWe evaluated the effects of excess iron on fibrogenesis and transforming growth factor beta (TGF-β) signaling in murine HSC. Cells were treated with holotransferrin (0.005-5g/L) for 24 hours, with or without the iron chelator deferoxamine (10µM). Gene expressions (α-SMA, Col1-α1, Serpine-1, TGF-β, Hif1-α, Tfrc and Slc40a1) were analyzed by quantitative real time-polymerase chain reaction, whereas TfR1, ferroportin, ferritin, vimentin, collagen, TGF-β RII and phospho-Smad2 proteins were evaluated by immunofluorescence, Western blot and enzyme-linked immunosorbent assay. ResultsHSC expressed the iron-uptake protein transferrin receptor 1 (TfR1) and the iron-export protein ferroportin. Holotransferrin upregulated TfR1 expression by 1.8-fold (P < 0.03) and ferritin accumulation (iron storage) by 2-fold (P < 0.01), and activated HSC with 2-fold elevations (P < 0.03) in α-SMA messenger RNA and collagen secretion, and a 1.6-fold increase (P < 0.01) in vimentin protein. Moreover, holotransferrin activated the TGF-β pathway with TGF-β messenger RNA elevated 1.6-fold (P = 0.05), and protein levels of TGF-β RII and phospho-Smad2 increased by 1.8-fold (P < 0.01) and 1.6-fold (P < 0.01), respectively. In contrast, iron chelation decreased ferritin levels by 30% (P < 0.03), inhibited collagen secretion by 60% (P < 0.01), repressed fibrogenic genes α-SMA (0.2-fold; P < 0.05) and TGF-β (0.4-fold; P < 0.01) and reduced levels of TGF-β RII and phospho-Smad2 proteins. ConclusionsHSC express iron-transport proteins. Holotransferrin (iron) activates HSC fibrogenesis and the TGF-β pathway, whereas iron depletion by chelation reverses this, suggesting that this could be a useful adjunct therapy for patients with fibrosis. Further studies in primary human HSC and animal models are necessary to confirm this.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.