Abstract

Iron-doped chitosan microsphere was prepared successfully and employed for effective adsorption of As(III). The results showed that the adsorption capacity benefited from the increase of iron content, and the maximum adsorption capacity was achieved at pH=8. According to the study of adsorption kinetics, adsorption rate was controlled by liquid film diffusion at a lower rotational speed, while it was controlled by chemical reaction rate at a higher rotational speed. The Freundlich and Temkin models exhibited a better fit to adsorption isotherm data, which indicated the adsorption of As(III) on iron-doped chitosan microsphere was chemisorption and the active sites of adsorbents were non-uniform distributed. Adsorption process was a spontaneous exothermic reaction because its AG and AH were negative. In presence of cations (Cd2+, Pb2+ or Zn2+) in solution, the iron-doped chitosan microsphere also showed the significant removal of As(III). However, the existence of anions (NO 3 − , SO 4 2− or PO 4 3− ) inhibited the As(III) removal at different level. PO 4 3− showed the most significant side effects on the removal of As(III) by iron-doped chitosan microsphere. The used iron-doped chitosan adsorbent can be effectively regenerated using 1.0 mol·L−1 NaOH solution, and the adsorption efficiency decreased only 15.69% after being reused three times. The results of XPS, FT-IR showed that the adsorption was mainly achieved by the coordination interaction between As (III) and doped Fe in adsorbent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.