Abstract

A highly ordered mesoporous carbon@iron disulfide (CMK-5@FeS2) composite was prepared via an in-situ impregnation and sulfurization method. The CMK-5 matrix with excellent conductivity and high surface area not only formed a continuous conductive network to improve the performance of the CMK-5@FeS2 composite, but also provided sufficient space to buffer the volume changes during cycling. The CMK-5@FeS2 cell exhibited excellent electrochemical performance. After 80 cycles, the CMK-5@FeS2 cell showed the discharge capacities of 650 and 380 mAh g–1 at 2 C and 5 C, respectively. The excellent results show that CMK-5 with unique mesoporous structure can contribute to accelerating ion transfer in the electrode due to the easy accessibility of the electrolyte, which implies CMK-5@FeS2 composite could be a promising cathode active material for rechargeable lithium ion (Li-ion) batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.