Abstract

Time dependence of iron interstitial concentration changes in p-type silicon wafers was measured with deep-level transient spectroscopy. A slab diffusion model was applied to the iron-to-FeB transformation in order to calculate the room temperature diffusion coefficient of iron. It was very close to the extrapolated value obtained from high temperature iron diffusivity and some room temperature diffusion data obtained by the electron paramagnetic resonance or by resistivity change measurements. The effects of oxygen and its precipitation on iron diffusion was considered, by comparing floating-zone wafers with Czochralski wafers of various oxygen contents. It was observed that these variables do not affect iron diffusivity at room temperature. It was also noted that there was no dependence of the substrate resistivity on the iron diffusivity at room temperature. From these results it is concluded that the apparent iron diffusion is mostly caused by the random walk of iron atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.