Abstract

This article continues the review of fundamental physical properties of iron and its complexes in silicon (Appl. Phys. A 69, 13 (1999)), and is focused on ongoing applied research of iron in silicon technology. The first section of this article presents an analysis of the effect of iron on devices, including integrated circuits, power devices, and solar cells. Then, sources of unintentional iron contamination and reaction paths of iron during device manufacturing are discussed. Experimental techniques to measure trace contamination levels of iron in silicon, such as minority carrier lifetime techniques (SPV, μ-PCD, and ELYMAT), deep-level transient spectroscopy (DLTS), total X-ray fluorescence (TXRF) and vapor-phase decomposition TXRF (VPD-TXRF), atomic absorption spectroscopy (AAS), mass spectrometry and its modifications (SIMS, SNMS, ICP-MS), and neutron activation analysis (NAA) are reviewed in the second section of the article. Prospective analytical tools, such as heavy-ion backscattering spectroscopy (HIBS) and synchrotron-based X-ray microprobe techniques (XPS, XANES, XRF) are briefly discussed. The third section includes a discussion of the present achievements and challenges of the electrochemistry and physics of cleaning of silicon wafers, with an emphasis on removal of iron contamination from the wafers. Finally, the techniques for gettering of iron are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.