Abstract
The Berlins Porphyry located on the South Island of New Zealand provides an opportunity to examine iron concretions formed in a subterranean system. Specifically, an alteration zone within the Berlins Porphyry contains iron concretions similar to sedimentary biologically-mediated iron concretions. Here, we provide evidence for two sources of dissolved Fe (II) that potentially aided in the formation of the iron concretions. Furthermore, we discuss the potential for microbial involvement in the anaerobic oxidation of Fe (II) to Fe (III) to form magnetite. Evidence in support of this hypothesis includes the low concentrations of iron and sulfur in the white hydrothermally altered porphyry outcrop and concretion cores; concentrated pyrite and magnetite mineralisation surrounding the cores; and δ13C values indicative of organic carbon (averaging −26 ‰ ± 4 ‰) within the iron cement, porphyry-core-boundary and outer weathered rinds of the concretions. Overall, these unusually preserved iron concretions could represent a new environmental niche for microorganisms and a potential analogue for microbially induced iron-oxidation. More importantly, this study illustrates the many obstacles involved in analysing and interpreting potential subterranean biosignatures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.