Abstract
Renal fibrosis plays an important role in the onset and progression of chronic kidney diseases (CKD). Although several mechanisms underlying renal fibrosis and candidate drugs for its treatment have been identified, the effect of iron chelator on renal fibrosis remains unclear. In the present study, we examined the effect of an iron chelator, deferoxamine (DFO), on renal fibrosis in mice with surgically induced unilateral ureter obstruction (UUO). Mice were divided into 4 groups: UUO with vehicle, UUO with DFO, sham with vehicle, and sham with DFO. One week after surgery, augmented renal tubulointerstitial fibrosis and the expression of collagen I, III, and IV increased in mice with UUO; these changes were suppressed by DFO treatment. Similarly, UUO-induced macrophage infiltration of renal interstitial tubules was reduced in UUO mice treated with DFO. UUO-induced expression of inflammatory cytokines and extracellular matrix proteins was abrogated by DFO treatment. DFO inhibited the activation of the transforming growth factor-β1 (TGF-β1)-Smad3 pathway in UUO mice. UUO-induced NADPH oxidase activity and p22phox expression were attenuated by DFO. In the kidneys of UUO mice, divalent metal transporter 1, ferroportin, and ferritin expression was higher and transferrin receptor expression was lower than in sham-operated mice. Increased renal iron content was observed in UUO mice, which was reduced by DFO treatment. These results suggest that iron reduction by DFO prevents renal tubulointerstitial fibrosis by regulating TGF-β-Smad signaling, oxidative stress, and inflammatory responses.
Highlights
The incidence of chronic kidney disease (CKD) has increased worldwide
We demonstrated that iron chelation using DFO alleviated renal tubulointerstitial fibrosis in mice with unilateral ureteral obstruction (UUO)
We showed that iron deprivation induced by DFO treatment suppressed renal interstitial fibrosis as well as the expression of collagen I, III, and IV in mice with UUO
Summary
The incidence of chronic kidney disease (CKD) has increased worldwide. CKD worsens morbidity and mortality in the general population [1,2]. The progression of CKD results in end-stage renal failure, which requires treatment by hemodialysis. Several factors are involved in the onset and progression of CKD. The process of renal tubulointerstitial fibrosis is characterized by extracellular matrix deposition, interstitial myofibroblast proliferation, and the infiltration of inflammatory mononuclear cells, which are thought to play an important role in the pathogenesis of CKD [3]. Preventing renal interstitial fibrosis is important for inhibiting the progression of CKD
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.