Abstract
The catalytic coupling and polymerization of CO2 and epoxides has been studied for over 50 years. While traditionally dominated by catalytic systems containing cobalt, chromium, and zinc, the use of iron catalysts has emerged in the past 10 years. This review provides an overview of the homogeneous iron-catalyzed transformations of carbon dioxide and epoxides to yield cyclic and/or polycarbonates. It is important to note the potential for cyclic carbonates to be used as monomers for polymer formation via transesterification or by ring-opening polymerization in some cases, e.g., cyclohexene carbonate. Typical catalytic systems are composed of a Lewis acidic iron center and an anionic nucleophilic source, either through an anionic group weakly bound to the metal center or the addition of an external cocatalyst, cooperatively described as a binary catalytic system. This review is divided into two sections: (1) iron catalysts for cyclic carbonates and (2) iron catalysts for polycarbonates. At the end of each section, a table summarizes each catalytic system and the reaction conditions utilized in an attempt to provide a clearer comparison across the literature. Focus is given to highlighting differences in product selectivity, reaction conditions, and relative amounts of cocatalyst used. The use of iron catalysts in CO2/epoxide chemistry has been less explored compared with zinc, cobalt, and chromium catalysts. This review highlights recent examples including iron complexes that deoxygenate epoxides in situ and geometry-dependent selectivity towards either polycarbonate or cyclic carbonate production. Reaction conditions (temperature, CO2 pressure, and amount of nucleophilic cocatalyst) and catalyst structure are all critical in accessing efficient catalysis for polycarbonate formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.