Abstract

Fast hydrothermal liquefaction of acid-washed Cladophora socialis macroalgae has been studied over homogeneous (KOH, K2CO3, H3PO4, HCOOH) and heterogeneous (H-ZSM-5, Raney Ni, Ru/C, Fe metal) catalysts in a batch reactor at 350 °C. Biocrude with maximum yield (36.2%) and energy density (37.1 MJ kg−1) and minimum heteroatom contents (3.8% N and 10.1% O) were achieved with metallic Fe. GC–MS indicates reduction in content of carbonyls, acids and N-containing substances and increase in levels of phenols and hydrocarbons in biocrude while 1H NMR suggests the enhanced formation of oxygenated/nitrogenous compounds in aqueous phase over Fe catalyst compared to non-catalytic test. Such carbonyls and acids removal was proposed to occur via hydride reduction and decarboxylation pathways, respectively. GPC and TAN confirm vast improvement in stability and corrosiveness properties of Fe-catalyzed biocrude. Regeneration of used catalyst has been conducted and the regenerated catalyst exhibited slight deactivation, likely due to sintering of Fe particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.