Abstract

Despite recent interest in the development of iron-catalyzed transformations, methods that use iron-based catalysts capable of controlling the enantioselectivity in carbon-carbon cross-couplings are underdeveloped. Herein, we report a practical and simple protocol that uses commercially available and expensive iron salts in combination with chiral bisphosphine ligands to enable the regio- and enantioselective (up to 91:9) multicomponent cross-coupling of vinyl boronates, (fluoro)alkyl halides, and Grignard reagents. Preliminary mechanistic studies are consistent with rapid formation of an α-boryl radical followed by reversible radical addition to monoaryl bisphosphine-Fe(II) and subsequent enantioselective inner-sphere reductive elimination. From a broader perspective, this work provides a blueprint to develop asymmetric Fe-catalyzed multicomponent cross-couplings via the use of alkenes as linchpins to translocate alkyl radicals, modify their steric and electronic properties, and induce stereocontrol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.