Abstract

Regioselective C–H bond alkylation of indolines and benzo[h]quinoline with a wide range of unactivated and highly demanded primary and secondary alkyl chlorides is accomplished using a low-cost iron catalyst. This reaction tolerates diverse functionalities, such as C(sp2)–Cl, fluoro, alkenyl, silyl, ether, thioether, pyrrolyl, and carbazolyl groups including cyclic and acyclic alkyls as well as alkyl-bearing fatty-alcohol and polycyclic-steroid moieties. The demonstrated iron-catalyzed protocol proceeded via either a five-membered or a six-membered metallacycle. Intriguingly, the C-7-alkylated indolines can be readily functionalized into free-NH indolines/indoles and tryptamine derivatives. A detailed mechanistic investigation highlights the participation of an active Fe(I) catalyst and the involvement of a halogen-atom transfer process via a single-electron-based mechanism. Deuterium labeling and kinetics analysis indicate that the C–H metalation of indoline is the probable turnover-limiting step. Overall, the experimental and theoretical studies supported an Fe(I)/Fe(III) pathway for the alkylation reaction comprising the two-step, one-electron oxidative addition of alkyl chloride.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call