Abstract

Alkoxylation, hydrosilylative-alkoxylation, and dehydrogenative-polymerization are some of the most widely used transformations in synthetic chemistry. However, these transformations are traditionally catalyzed by precious, and rare late-transition metals. Presented here is a molecularly defined iron complex that catalyzes alkoxylation, tandem hydrosilylative-alkoxylation, and dehydrogenative polymerization of silanes under mild conditions. The iron complex [Fe(CO)4(H)(SiPh3)] 1 catalyzes a direct Si-O coupling reaction between an array of silanes and alcohols to produce desired alkoxysilanes in excellent yield, with H2 as the only byproduct. The iron catalyst tolerates various functional groups and provides access to 20 alkoxysilanes, including essential molecules such as β-citronellol and cholesterol. Further, complex 1 catalyzes the polymerization of renewable diol and silane monomer to produce a renewable and degradable poly(isosorbide-silyl ether). Remarkably, complex 1 catalyzes a tandem hydrosilylative-alkoxylation of alkynes under mild conditions to yield unsaturated silyl ethers. The synthetic utility has been demonstrated by gram-scale alkoxylation and hydrosilylative-alkoxylation reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.