Abstract

AbstractA numerical model for the carburization of iron in CO‐H2‐He mixtures was developed and compared with experimental data over the temperature range of 850°C–1150°C, CO partial pressures from 1% to 12%, and H2 partial pressures from 5% to 99%. The reaction mechanism was established on the basis of data input from recent quantum mechanical and molecular dynamics calculations as well as from rate constant estimates from kinetic and transition state theory. Sensitivity and reaction flux analyses were performed to identify the rate‐controlling and fastest reactions. Model predictions of carbon weight gain in iron samples versus time were compared with experimental data. The most sensitive reactions were refined by least‐squares fitting the model to the experiment. The resulting model can simulate and predict the trends of iron carburization in CO‐H2‐He‐CO2‐H2O mixtures for most conditions studied experimentally. Critical reactions and model parameters are identified for additional study to improve the model and understanding of the carburization mechanism. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 337–348, 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.