Abstract

The tetrapodal pentaamine 2,6-C5H3N[CMe(CH2NH2)2]2 (pyN4, 1) forms a series of octahedral iron(II) complexes of general formula [Fe(L)(1)]Xn with a variety of small-molecule ligands L at the sixth coordination site (L = X = Br, n = 1 (2); L = CO, X = Br, n = 2 (3); L = NO, X = Br, n = 2 (4); L = NO+, X = Br, n = 3 (5); L = NO2-, X = Br, n = 1 (6)). The bromo complex, which is remarkably stable towards hydrolysis and oxidation, serves as the precursor for all other complexes, which may be obtained by ligand exchange, employing CO, NO, NOBF4, and NaNO2, respectively. All complexes have been fully characterised, including solid-state structures in most cases. Attempts to obtain single crystals of 6 produced the dinuclear complex [Fe2[mu 2-(eta 1-N: eta 1-O)-NO2](1)2]Br2PF6 (7), whose bridging NO2- unit, which is unsupported by bracketing ligands, is without precedent in the coordination chemistry of iron. Compound 2 has a high-spin electronic configuration with four unpaired electrons (S = 2), while the carbonyl complex 3 is low-spin (S = 0), as are complexes 5, 6 and 7 (S = 0 in all cases); the 19 valence electron nitrosyl complex 4 has S = 1/2. Complex 4 and its oxidation product, 5 ([Fe(NO)]7 and [Fe(NO)]6 in the Feltham-Enemark notation) may be interconverted by a one-electron redox process. Both complexes are also accessible from the mononuclear nitro complex 6: Treatment with acid produces the 18 valence electron NO+ complex 5, whereas hydrolysis in the absence of added protons (in methanolic solution) gives the 19 valence electron NO. complex 4, with formal reduction of the NO2- ligand. This reactivity mimicks the function of certain heme-dependent nitrite reductases. Density functional calculations for complexes 3, 4 and 5 provide a description of the electronic structures and are compatible with the formulation of iron(II) in all cases; this is derived from the careful analysis of the combined IR, ESR and Mössbauer spectroscopic data, as well as structural parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.