Abstract
Metal-organic frameworks (MOFs) are promising catalysts for electrochemical reactions. Herein, self-supported NiFe-MOF nanoplates grown on Ni foam (NF) were prepared with iron carbonate hydroxide nanosheets (FeCH NSs) as a semisacrificial template and evaluated for the electrocatalytic oxygen evolution reaction (OER). In this approach, the porous FeCH NSs not only serve as the iron source of NiFe-MOF, but also slow down the leaching of Ni ions from the substrate, thus playing a unique role in regulating the morphology of NiFe-MOF with reduced thickness and sizes, enabling rapid electron transfer and mass transport. The resultant NiFe-MOF/FeCH-NF electrode showed higher activity than FeCH template-free electrodes and superior OER performance over other MOF based binder-free OER electrodes. A current density of 10 mA cm-2 was obtained at a low overpotential of 200 mV with excellent durability in alkaline solution. Raman and TEM measurements reveal the partial transformation of NiFe-MOF to hydroxide during water oxidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.