Abstract

Globally, a vast extent of tidal wetlands will be threatened by sea-level-rise-induced salinization. Because ferric (hydro)oxides [Fe(III)] play a crucial role in soil organic carbon (SOC) preservation, understanding the responses of the Fe-bound C pool to increasing salinity could assist in accurate prediction of the changes in C stocks in the tidal wetland soils facing imminent sea-level rise. In this study, we investigated pools of Fe-bound C and SOC, C-degrading enzyme activity, Fe species contents and Fe-cycling bacteria, and plant properties along a salinity gradient from freshwater (0.0 ± 0.1 ppt; part per thousand) to oligohaline (2.6 ± 0.6 ppt) in a subtropical tidal wetland. Overall, the belowground biomass and the content of root Fe(III) plaque (a proxy of root oxygen loss potential) rose with the increasing salinity. Along the salinity gradient, the abundance of Gallionella (Fe-oxidizing bacteria) increased, but the abundance of Geobacter (Fe-reducing bacteria) decreased. The Fe(II):Fe(III) ratios decreased as salinity increased, implying that more Fe(II) was oxidized and immobilized into Fe(III) closer to the sea. Fe sulfides contents also elevated close to sea. The co-existence of Fe(III) and Fe sulfides at the oligohaline sites implied a high spatial heterogeneity of Fe distribution. During the growing season, the SOC pool generally decreased with increasing salinity, probably due to a reduction in aboveground-C input and enhanced activity of the C-degrading enzyme. The Fe-bound C pool was positively affected by the amorphous Fe(III) content and negatively related to the activity of phenol oxidase. The Fe-bound C pool generally rose along the salinity gradient, with the importance of Fe-bound C to SOC increasing from 18% to 29%. Altogether, our findings implied that when the imminent sea-level-rise-induced salinization occurs, the total soil C stock may generally decrease, but Fe-bound C will become increasingly important in protecting the rest of the C stocks in tidal wetland soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.