Abstract

Iron (Fe) deficiency elevates human mortality rates, especially in developing countries. In Myanmar, the prevalence of Fe-deficient anemia in children and pregnant women are 75 and 71%, respectively. Myanmar people have one of the highest per capita rice consumption rates globally. Consequently, production of Fe-biofortified rice would likely contribute to solving the Fe-deficiency problem in this human population. To produce Fe-biofortified Myanmar rice by transgenic methods, we first analyzed callus induction and regeneration efficiencies in 15 varieties that are presently popular because of their high-yields or high-qualities. Callus formation and regeneration efficiency in each variety was strongly influenced by types of culture media containing a range of 2,4-dichlorophenoxyacetic acid concentrations. The Paw San Yin variety, which has a high-Fe content in polished seeds, performed well in callus induction and regeneration trials. Thus, we transformed this variety using a gene expression cassette that enhanced Fe transport within rice plants through overexpression of the nicotianamine synthase gene HvNAS1, Fe flow to the endosperm through the Fe(II)-nicotianamine transporter gene OsYSL2, and Fe accumulation in endosperm by the Fe storage protein gene SoyferH2. A line with a transgene insertion was successfully obtained. Enhanced expressions of the introduced genes OsYSL2, HvNAS1, and SoyferH2 occurred in immature T2 seeds. The transformants accumulated 3.4-fold higher Fe concentrations, and also 1.3-fold higher zinc concentrations in T2 polished seeds compared to levels in non-transgenic rice. This Fe-biofortified rice has the potential to reduce Fe-deficiency anemia in millions of Myanmar people without changing food habits and without introducing additional costs.

Highlights

  • Iron (Fe) deficiency is one of the most prevalent micronutrient deficiency problems in humans

  • CALLUS INDUCTION AND GROWTH AT STANDARD 2,4-D CONCENTRATIONS Fifteen Myanmar rice varieties were included in the callus induction and regeneration trials

  • Callus induction and callus growth were better on N6D media than on 2N6 media (Figures S3 and S4 in Supplementary Material)

Read more

Summary

Introduction

Iron (Fe) deficiency is one of the most prevalent micronutrient deficiency problems in humans. The prevalence of IDA is ∼75% in Myanmar children under 5 years of age, ∼26% in adolescent schoolgirls, ∼45% in nonpregnant women, and ∼71% in pregnant women (MOH, 2003). It shows many population groups are strongly impacted by IDA. IDA causes disruptions in brain development in young children and deaths of women in pregnancy and childbirth. It threatens national productivities and lowers the intellectual capacity of human populations (UNICEF and The Micronutrient Initiative, 2004a) in addition to causing coma and death in severe cases of anemia (WHO, 2002). Mineral deficiency lowers the annual productivity of the Myanmar adult work force by an estimated 0.7% of GDP (UNICEF and The Micronutrient Initiative, 2004b)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.