Abstract

Iron (Fe) deficiency anemia in young children is a global health concern which can be reduced by Fe fortification of foods. Cereal is often one of the first foods given to infants, providing adequate quantities of Fe during weaning. In this work, we have compared iron bioavailability and iron status of four iron sources used to fortify infant cereals, employing piglets as an animal model. The study was conducted on 36 piglets, 30 of them with induced anemia. From day 28 of life, the weaned piglets were fed with four experimental diets (n = 6) each fortified with 120mg Fe/kg by ferrous sulfate heptahydrate (FSH), electrolytic iron (EI), ferrous fumarate (FF), or micronized dispersible ferric pyrophosphate (MDFP) for another 21days. In addition, one group of six anemic piglets fed with the basal diet with no iron added (Control-) and a Control+ group of non-anemic piglets (n = 6) were also studied. Blood indicators of iron status were measured after depletion and during the repletion period. The Fe content in organs, hemoglobin regeneration efficiency, and relative bioavailability (RBV) was also determined. The Fe salts adequately treated anemia in the piglets, allowing the animals to recover from the anemic state, although EI was less efficient with regard to replenishing Fe stores giving lower concentrations of plasma ferritin and iron in the spleen, liver, lung, and kidney. In addition, the RBV of EI was 88.27% with respect to the reference iron salt (FSH). Ferrous fumarate and MDFP were equally as bioavailable as the reference salt, and were used significantly better than EI in piglets. These results contribute to extend the evidence-based results for recommending the most suitable fortificant for infant cereals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call