Abstract

BackgroundMosquitoes are responsible for transmission of viruses, including dengue, West Nile and chikungunya viruses. Female mosquitoes are infected when they blood-feed on vertebrates, a required step for oogenesis. During this process, mosquitoes encounter high iron loads. Since iron is an essential nutrient for most organisms, including pathogens, one of the defense mechanisms for the host includes sequestration of iron away from the invading pathogen. Here, we determine whether iron availability affects viral replication in mosquitoes.MethodsTo elucidate effect of iron availability on mosquito cells during infection, Culex cells were treated with either ferric ammonium citrate (FAC) or the iron chelator, deferoxamine (DFX). Real time RT-PCR was performed using ferritin (heavy chain) and NRAMP as a measure of iron homeostasis in cells. To determine iron requirement for viral replication, Culex cells were knocked down for NRAMP using dsRNA. Finally, the results were validated in Culex mosquito-infection model, by treating infected mosquitoes with DFX to reduce iron levels.ResultsOur results show that infection of Culex cells led to induction in levels of ferritin (heavy chain) and NRAMP mRNAs in time-dependent manner. Results also showed that treatment of cells with FAC, reduced expression of NRAMP (iron transporter) and increase levels of ferritin (heavy chain). Interestingly, increasing iron levels increased viral titers; while reducing intracellular iron levels, either by NRAMP knock-down or using DFX, reduced viral titers. The results from Culex mosquito infection showed that mosquitoes treated with DFX had reduced viral titers compared with untreated controls in midgut as well as carcass 8 days pi. Saliva from mosquitoes treated with DFX also showed reduced viral titers compared with untreated controls, indicating low viral transmission capacity.ConclusionsOur results indicate that iron is required for viral replication in mosquito cells. Mosquitoes respond to viral infection, by inducing expression of heavy chain ferritin, which sequesters available iron, reducing its availability to virus infected cells. The data indicates that heavy chain ferritin may be part of an immune mechanism of mosquitoes in response to viral infections.

Highlights

  • Mosquitoes are responsible for transmission of viruses, including dengue, West Nile and chikungunya viruses

  • To determine whether mosquito iron metabolism is influenced by viral infection, Culex cells were infected with West Nile virus (WNV) and real time RT-PCR was performed to determine expression levels of iron storage protein, ferritin and iron transporter, Natural resistance-associated macrophage protein (NRAMP)

  • The results indicate that viral infection leads to changes in iron metabolism

Read more

Summary

Introduction

Mosquitoes are responsible for transmission of viruses, including dengue, West Nile and chikungunya viruses. Female mosquitoes are infected when they blood-feed on vertebrates, a required step for oogenesis. During this process, mosquitoes encounter high iron loads. Like proteins, which are required by females for oogenesis [5], vertebrate blood contains high levels of iron, which is used by mosquitoes for egg development to produce viable offspring [6]. This high level of iron in the blood meal is provided as hemoglobin in erythrocytes, and as ferric-transferrin. Most of the heme iron is excreted by the mosquito, iron from ferric-transferrin is highly absorbed [7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call