Abstract

Iron is an essential mineral for oxygen delivery and for a variety of enzymatic activities, but excessive iron results in oxidative cytotoxicity. Because iron is primarily used in red blood cells, defective erythropoiesis caused by loss of the erythroid growth factor erythropoietin (Epo) elevates iron storage levels in serum and tissues. Here, we investigated the effects of iron in a mouse model of Epo-deficiency anemia, in which serum iron concentration was significantly elevated. We found that intraperitoneal injection of iron-dextran caused severe iron deposition in renal interstitial fibroblasts, the site of Epo production. Iron overload induced by either intraperitoneal injection or feeding decreased activity of endogenous Epo gene expression by reducing levels of hypoxia-inducible transcription factor 2α (HIF2α), the major transcriptional activator of the Epo gene. Administration of an iron-deficient diet to the anemic mice reduced serum iron to normal concentration and enhanced the ability of renal Epo production. These results demonstrate that iron overload due to Epo deficiency attenuates endogenous Epo gene expression in the kidneys. Thus, iron suppresses Epo production by reducing HIF2α concentration in renal interstitial fibroblasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.