Abstract

Porous luffa plant fibre (LF) was grafted with Fe and Zr, and the ability of the fabricated adsorbents to remove arsenate (As(V)) from water was investigated in batch and column adsorption experiments. The Langmuir adsorption capacity (mg g−1) at pH 7 of LF was found to be 0.035, which increased to 2.55 and 2.89 after being grafted with Fe (FLF-3) and Zr (ZLF-3), respectively. Grafting with Fe and Zr increased the zeta potential and zero point of charge (ZPC) of LF (from pH 3.9 to 7.4 for Fe grafting and to 7.6 for Zr grafting), due to chemical bonding of the metals, possibly with the hydroxyl and carboxylic groups in LF as indicated in FTIR peaks. Zeta potential and ZPC decreased after As adsorption owing to inner-sphere complexation mechanism of adsorption. The increase of pH from 3 to 10 progressively reduced the adsorbents’ adsorption capacity. Co-existing anions weakened the As(V) removal efficiency in the order, PO43− > SiO32− > CO32− > SO42−. Adsorption kinetics data fitted well to the Weber and Morris model, which revealed initial fast and subsequent slow rates of intra-particle As diffusion into the bigger pores and smaller pores, respectively. Column adsorption data fitted well to the Thomas model with the predicted adsorption capacities in the same order as in the batch adsorption experiment (ZLF-3 > FLF-3 > LF).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.