Abstract
In this work, three novel catalysts were prepared by 2.5, 5.0, and 10.0wt.% facile impregnation with an iron and molybdenum mixed oxide (Fe/Mo) on an aluminum pillared clay (Al-PILC) support. These materials were characterized by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), X-ray diffraction (XRD), temperature programed reduction (TPR), and nitrogen (N2) physisorption at 77K. Characterizations indicated that the metal particles were dispersed on the surface of the three catalysts, and the interlayer d001 spacing of the pillared material remained unchanged after the impregnation process. The catalytic tests showed good results for DBT oxidation using the synthesized catalysts, with high turnover frequency (TOF) values, particularly for the material with 5.0wt.% Fe/Mo. Theoretical calculations were carried out at the density functional theory (DFT) level, to investigate how the DBT molecules were adsorbed onto the surface of the mixed oxide. The lowest energy proposal was obtained when both Fe and Mo were present at the active sites, indicating a possible synergistic effect of the metals on catalyst activity. Reuse tests indicated that the catalysts could be employed effectively for up to 3cycles in a row, then a decrease in activity occurred and the active sites needed to be regenerated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.