Abstract

Microanalysis of epoxy resin-embedded sediments is used to demonstrate the presence of authigenic iron (Fe) (II) phosphates and manganese (Mn)-calcium (Ca)-carbonate-phosphates in the deep euxinic basins of the Baltic Sea. These minerals constitute major burial phases of phosphorus (P) in this area, elevating the total P burial rate above that expected for a euxinic depositional environment. Particle shuttles of Fe and Mn oxides into the deep euxinic basins act as drivers for P-bearing mineral authigenesis. While Fe(II) phosphates are formed continuously in the upper sediments following the sulfidization of Fe-oxyhydroxides and release of associated P, Mn-Ca-carbonate-phosphates are formed intermittently following inflow events of oxygenated North Sea water into the deep basins. The mechanism of Fe(II) phosphate formation differs from previously reported occurrences of vivianite formation in marine sediments, by occurring within, rather than below, the sulfate-methane transition zone. The spatial distribution of both authigenic phases in Baltic sediments varies in accordance with the periodic expansion of anoxia on centennial to millennial timescales. The results highlight the potential importance of authigenic P-bearing minerals other than carbonate fluorapatite for total P burial in euxinic basins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call