Abstract

In this paper, Scots pine (Pinus sylvestris L.) roots grown in soils with and without contamination from emission of a plant steel were analyzed for Fe and Mn, as well as the shoots and needles with and lacking pollution. The aim was to assess the content of Fe and Mn in soils under given conditions, and the interaction between pine plant and soil in terms of metal accumulation in the fine roots, annual shoots, and annual needles. The iron content in the soil of polluted areas does not contrast with its control amount. Conversely, the iron content in fine pine roots under contamination conditions is 2.1–4.4 times higher than the control values. There were no significant excesses of the manganese content in the soil in polluted conditions compared to the control, but its content in the 0–20 cm soil layer is 27–32 times higher than the background concentrations. The iron contentment in belowground (fine roots) and aboveground (annual shoots and needles) parts of pine trees in a context of contamination is higher than the control values (2.1–4.4 and 1.50–1.54 times, respectively). The manganese content in fine pine roots under contamination conditions is 2.8–10.7 times less than in control, while its content in shoots and needles is higher (2.23–2.76 times) in comparison with the control. Based on the values of the biological accumulation and migration coefficients, what in each case slighter than one, for Scots pine the iron represent not an element that actively accumulates. Nevertheless, for manganese, this stock model is valid only for fine roots, whereas under the contaminated environment, the metal mobility steepen, and the migration pattern shifts towards increased manganese accumulation in the aboveground part of pine trees.

Highlights

  • In this paper, Scots pine (Pinus sylvestris L.) roots grown in soils with and without contamination from emission of a plant steel were analyzed for Fe and Mn, as well as the shoots and needles with and lacking pollution

  • The iron content in fine roots is weak correlated with soil acidity (R2 = 0.30) and humus content (R2 = 0.38) (Fig. 4)

  • Studies have shown that the light gray forest soils of the region are excessively contaminated by emissions of the Novlipetsk Steel, primarily manganese

Read more

Summary

Introduction

Scots pine (Pinus sylvestris L.) roots grown in soils with and without contamination from emission of a plant steel were analyzed for Fe and Mn, as well as the shoots and needles with and lacking pollution. The iron content in fine pine roots under contamination conditions is 2.1–4.4 times higher than the control values. The iron contentment in belowground (fine roots) and aboveground (annual shoots and needles) parts of pine trees in a context of contamination is higher than the control values (2.1–4.4 and 1.50–1.54 times, respectively). Based on the values of the biological accumulation and migration coefficients, what in each case slighter than one, for Scots pine the iron represent not an element that actively accumulates For manganese, this stock model is valid only for fine roots, whereas under the contaminated environment, the metal mobility steepen, and the migration pattern shifts towards increased manganese accumulation in the aboveground part of pine trees. High dossage of iron may cause conjunctivitis and c­ horoiditis[20]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.