Abstract
AbstractFe,Al-bearing MgSiO3 perovskite (bridgmanite) is considered to be the most abundant mineral in Earth’s lower mantle, hosting ferric iron in its structure as charge-coupled (Fe2O3 and FeAlO3) and vacancy components (MgFeO2.5 and Fe2/3SiO3). We examined concentrations of ferric iron and aluminum in the perovskite phase as a function of temperature (1700–2300 K) in the MgSiO3-FeAlO3-MgO system at 27 GPa using a multi-anvil high-pressure apparatus. We found a LiNbO3-structured phase in the quenched run product, which was the perovskite phase under high pressures and high temperatures. The perovskite phase coexists with corundum and a phase with (Mg,Fe3+,☐)(Al,Fe3+)2O4 composition (☐ = vacancy). The FeAlO3 component in the perovskite phase decreases from 69 to 65 mol% with increasing temperature. The Fe2O3 component in the perovskite phase remains unchanged at ~1 mol% with temperature. The A-site vacancy component of Fe2/3SiO3 in the perovskite phase exists as 1–2 mol% at 1700–2000 K, whereas 1 mol% of the oxygen vacancy component of MgFeO2.5 appears at higher temperatures, although the analytical errors prevent definite conclusions. The A-site vacancy component might be more important than the oxygen vacancy component for the defect chemistry of bridgmanite in slabs and for average mantle conditions when the FeAlO3 charge-coupled component is dominant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.