Abstract

Intestinal iron absorption is an essential physiological process that is regulated by the liver-derived peptide hepcidin. This review will describe recent advances in hepcidin biology and enterocyte iron transport. Hepcidin acts as a repressor of iron absorption and its expression in turn reflects a range of systemic cues, including iron status, hypoxia, erythropoiesis and inflammation. These act through proteins on the hepatocyte plasma membrane such as HFE, hemojuvelin and transferrin receptor 2 to alter transcription of the hepcidin gene. Bone morphogenetic protein-SMAD signaling provides a key pathway of hepcidin activation, whereas the membrane-bound serine protease matriptase-2 and the erythroid factor growth differentiation factor 15 have emerged as important negative regulators of hepcidin expression. At the enterocyte itself, the recent demonstration of a chaperone for delivering iron to ferritin and new data on iron release from the hepcidin target ferroportin are helping to define the pathway of iron movement across the intestinal epithelium. Disturbances in the hepcidin regulatory pathway underlie a range of iron metabolism disorders, from iron deficiency to iron loading, and there is considerable promise that the exciting recent advances in understanding hepcidin action will be translated into improved diagnostic and therapeutic modalities in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.