Abstract

Metal-ligand cluster ions are structurally characterized by means of gas-phase infrared multiple photon dissociation spectroscopy. The mass-selected complexes consist of one or two metal cations M3+ (M = Al, Fe, or Ru) and two to five anionic bidentate acetylacetonate ligands. Experimental IR spectra are compared with different density functional theory calculations, namely, PBE/TZVP, B3LYP/6-31G*, and M06/6-31+G**. Frequency analysis was also performed at different levels, namely, scaled static harmonic and unscaled static anharmonic, or with ab initio molecular dynamics simulations at the PBE/TZVP level. All methods lead to simulated spectra that fit rather well with experimental data, and the spectral red shifts of several main bands, in the 1200 cm-1-1800 cm-1 range, are sensitive to the strength of the metal-ligand interaction and to the spin state of the ion. Due to the rigidity of those complexes, first principles molecular dynamics calculations provide spectra similar to that produced by static calculations that are already able to catch the main spectral signatures using harmonic calculations at the B3LYP/6-31G* level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.