Abstract

In this study, the structures of [Na(GlyAla)(H2O)](+) and [Ca(GlyAla-H)(H2O)n](+), (n = 1-3) solvated ion-molecule complexes (as well as the AlaGly isomers) were investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and with computational methods. Calculations showed that in the calcium clusters, the lowest-energy complex is the one in which the peptide is deprotonated at the carboxylic acid end and that Ca(2+) binds to both carboxylate oxygen atoms as well as the amide carbonyl oxygen. For the microsolvated structures, all three water molecules also bind directly to Ca(2+). For the singly, doubly, and triply solvated complexes, these structures are supported by experimental IRMPD spectra. For the [Na(GlyAla)(H2O)](+) complex, both carbonyl oxygen atoms, one from the intact carboxylic acid and one from the amide group, as well as the water molecule were found to be bound to the Na(+). In all of the spectra, a strong band is observed between 3300 and 3400 cm(-1) and is assigned to the amide N-H stretch, which is red-shifted due to hydrogen bonding with the amine nitrogen. The position of the hydrogen-bonded amide N-H stretch is experimentally and theoretically found to be sensitive to the number of water molecules; it is shown to blue shift upon successive hydrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.