Abstract

This paper presents an iris recognition technique based on the zigzag collarette region for segmentation and asymmetrical support vector machine to classify the iris pattern. The deterministic feature sequence extracted from the iris images using the 1D log-Gabor filters is applied to train the support vector machine (SVM). We use the multi-objective genetic algorithm (MOGA) to optimize the features and also to increase the overall recognition accuracy based on the matching performance of the tuned SVM. The traditional SVM is modified to an asymmetrical SVM to treat the cases of the False Accept and the False Reject differently and also to handle the unbalanced data of a specific class with respect to the other classes. The proposed technique is computationally effective with recognition rates of 97.70 % and 95.60% on the ICE (Iris Challenge Evaluation) and the WVU (West Virginia University) iris datasets respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.