Abstract

Excessive endogenous or exogenous levels of the stress hormone cortisol have negative effects on various tissues, including the skin. Iris pallida (IP), used in traditional medicine and perfumes, exhibits biological activities, such as antioxidant and anti-inflammatory activities. In this study, we aimed to investigate the inhibitory effect of IP extract (IPE) on cortisol activity in human skin cells. We found that IPE alleviated the cortisol-induced decrease in the levels of procollagen type 1 and hyaluronic acid (HA), which were significantly recovered by 106% and 31%, respectively, compared with cortisol-induced reductions. IPE also rescued the suppression of the gene expression of COL1A1 and the HA synthases HAS2 and HAS3 in cortisol-exposed cells. Moreover, IPE blocked the cortisol-induced translocation of the glucocorticoid receptor (GR) from the cytoplasm to the nucleus as effectively as the GR inhibitor mifepristone. Analysis using a high-performance liquid chromatography-diode-array detector system revealed that irigenin, an isoflavone, is the main component of IPE, which restored the cortisol-induced reduction in collagen type 1 levels by 82% relative to the cortisol-induced decrease. Our results suggest that IPE can act as an inhibitor of cortisol in human skin cells, preventing cortisol-induced collagen and HA degradation by blocking the nuclear translocation of the GR. Therefore, IPE may be used as a cosmetic material or herbal medicine to treat stress-related skin changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call