Abstract
Reported herein is the development of the Ir(III)-catalyzed direct C-H amidation of arenes and alkenes using acyl azides as the nitrogen source. This procedure utilizes an in situ generated cationic half-sandwich iridium complex as a catalyst. The reaction takes place under very mild conditions, and a broad range of sp(2) C-H bonds of chelate group-containing arenes and olefins are smoothly amidated with acyl azides without the intervention of the Curtius rearrangement. Significantly, a wide range of reactants of aryl-, aliphatic-, and olefinic acyl azides were all efficiently amidated with high functional group tolerance. Using the developed approach, Z-enamides were readily accessed with a complete control of regio- and stereoselectivity. The developed direct amidation proceeds in the absence of external oxidants and releases molecular nitrogen as a single byproduct, thus offering an environmentally benign process with wide potential applications in organic synthesis and medicinal chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.