Abstract

Interspecific hybridization among non-native plant species can generate genotypes that are more reproductively successful in the introduced habitat than either parent. One important mechanism that may serve as a stimulus for the evolution of invasiveness in hybrids is increased variation in secondary metabolite chemistry, but still very little is known about patterns of chemical trait introgression in plant hybrid zones. This study examined the occurrence of iridoid and secoiridoid glycosides (IGs), an important group of plant defense compounds, in three species of honeysuckle, Lonicera morrowii A. Gray, Lonicera tatarica L., and their hybrid Lonicera×bella Zabel. (Caprifoliaceae), all of which are considered invasive in various parts of North America. Hybrid genotypes had a diversity of IGs inherited from both parent species, as well as one component not detected in either parent. All three species were similar in that overall concentrations of IGs were significantly higher in fruits than in leaves, and several compounds that were major components of fruits were never found in leaves. However, specific patterns of quantitative distribution among leaves, unripe fruits, and ripe fruits differed among the three species, with a relatively higher allocation to fruits in the hybrid species than for either parent. These patterns likely have important consequences for plant interactions with antagonistic herbivores and pathogens as well as mutualistic seed dispersers, and thus the potential invasiveness of hybrid and parental species in their introduced range. Methods established here for quantitative analysis of IGs will allow for the exploration of many compelling research questions related to the evolutionary ecology and invasion biology of these and other related species in the genus Lonicera.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.