Abstract

The enol silanes of vinylogous esters and amides are classic dienes for Diels-Alder reactions. Here, we report their reactivity as nucleophiles in Ir-catalyzed, enantioselective allylic substitution reactions. A variety of allylic carbonates react with these nucleophiles to give allylated products in good yields with high enantioselectivities and excellent branched-to-linear ratios. These reactions occur with KF or alkoxide as the additive, but mechanistic studies suggest that these additives do not activate the enol silanes. Instead, they serve as bases to promote the cyclometalation to generate the active Ir catalyst. The carbonate anion, which was generated from the oxidative addition of the allylic carbonate, likely activates the enol silanes to trigger their activity as nucleophiles for reactions with the allyliridium electrophile. The synthetic utility of this method was illustrated by the synthesis of the anti-muscarinic drug, fesoterodine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.