Abstract

Functional 2-pyrazolyl-6-phenylpyridine chelates-namely, (pzpyphBu)H2 and (pzpyphCF3)H2 and phosphines-are successfully employed in the preparation of emissive Ir(III) metal complexes, for which the reaction with phosphine such as PPh3, PPh2Me, and PPh2(CH2Ph) afford corresponding Ir(III) complexes [Ir(pzpyphBu)(PPh3)2H] (1a), [Ir(pzpyphCF3)(PPh2R)2H] (2a-2c), R = Ph, Me, CH2Ph, which also show an equatorial coordinated hydride. In contrast, treatment with 1,2-bis(diphenylphosphino)benzene (dppb) and 1,2-bis(diphenylphosphino)ethane (dppe) yields the isomeric products [Ir(pzpyphBu)(dppb)H] (3a) and [Ir(pzpyphBu)(dppe)H] (3b), for which the distinctive, axial hydride undergoes rapid chlorination, forming chlorinated complexes [Ir(pzpyphBu)(dppb)Cl] (4a) and [Ir(pzpyphBu)(dppe)Cl] (4b), respectively. On the other hand, upon extensive heating of 2c, one of its coordinated PPh2(CH2Ph) exhibits benzyl cyclometalation and hydride elimination to afford [Ir(pzpyphCF3)(PPh2R)(PPh2R')] (5c and 6c) R = CH2Ph and R' = CH2( o-C6H4) as the kinetic and thermodynamic products, respectively. Their structural, photophysical, and electrochemical properties are examined and further affirmed by the computational approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call