Abstract

In the context of a complete metric space, we will consider the common fixed point problem for two self operators. The operators are assumed to satisfy a general contraction type condition inspired by the Ćirić fixed point theorems. Under some appropriate conditions we establish existence, uniqueness and approximation results for the common fixed point. In the same framework, the second problem is to study various stability properties. More precisely, we will obtain sufficient conditions assuring that the common fixed point problem is well-posed and has the Ulam–Hyers stability, as well as the Ostrowski property for the considered problem. Some examples and applications are finally given in order to illustrate the abstract theorems proposed in the first part of the paper. Our results extend and complement some theorems in the recent literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.