Abstract

Iris Biometric is a unique physiological noninvasive trait of human beings that remains stable over a person's life. In this paper, we propose an Iris Recognition using Hybrid Domain Features (IRHDF) as Dual Tree Complex Wavelet Transform (DTCWT) and Over Lapping Local Binary Pattern (OLBP). An eye is preprocessed to extract the complex wavelet features to obtain the Region of Interest (ROI) area from an iris. OLBP is further applied on ROI to generate features of magnitude coefficients. Resultant features are generated by fusion of DTCWT and OLBP using arithmetic addition. Euclidean Distance (ED) is used to match the test iris image with database iris features to recognize a person. We observe that the values of Equal Error Rate (EER) and Total Success Rate (TSR) are better than in [7].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.