Abstract

Gait authentication as a technique that can continuously provide identity recognition on mobile devices for security has been investigated by academics in the community for decades. However, most of the existing work achieves insufficient generalization to complex real-world environments due to the complexity of the noisy real-world gait data. To address this limitation, we propose an intelligent Implicit Real-time Gait Authentication (IRGA) system based on Deep Neural Networks (DNNs) for enhancing the adaptability of gait authentication in practice. In the proposed system, the gait data (whether with complex interference signals) will first be processed sequentially by the imperceptible collection module and data preprocessing module for improving data quality. In order to illustrate and verify the suitability of our proposal, we provide analysis of the impact of individual gait changes on data feature distribution. Finally, a fusion neural network composed of a Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) is designed to perform feature extraction and user authentication. We evaluate the proposed IRGA system in heterogeneous complex scenarios and present start-of-the-art comparisons on three datasets. Extensive experiments demonstrate that the IRGA system achieves improved performance simultaneously in several different metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.