Abstract

DNA N4-Methylcytosine is a genetic modification process which has an essential role in changing different biological processes such as DNA conformation, DNA replication, DNA stability, cell development and structural alteration in DNA. Due to its negative effects, it is important to identify the modified 4mC sites. Further, methylcytosine may develop anywhere at cytosine residue, however, clonal gene expression patterns are most likely transmitted just for cytosine residues in strand-symmetrical sequences. For this reason many different experiments are introduced but they proved not to be viable choice due to time limitation and high expenses. Therefore, to date there is still need for an efficient computational method to deal with 4mC sites identification. Keeping it in mind, in this research we have proposed an efficient model for Fragaria vesca (F. vesca) and Rosa chinensis (R. chinensis) genome. The proposed iRG-4mC tool is developed based on neural network architecture with two encoding schemes to identify the 4mC sites. The iRG-4mC predictor outperformed the existing state-of-the-art computational model by an accuracy difference of 9.95% on F. vesca (training dataset), 8.7% on R. chinesis (training dataset), 6.2% on F. vesca (independent dataset) and 10.6% on R. chinesis (independent dataset). We have also established a webserver which is freely accessible for the research community.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.