Abstract

AbstractRobust and rapid induction of interferon-β (IFN-β) in monocytes after pathogenic stimulation is a hallmark of innate immune responses. Here, we reveal the molecular mechanism underlying this key property that is exclusive to human blood monocytes. We found that IFN-β was produced rapidly in primary human monocytes as a result of cooperation between the myeloid-specific transcription factor IRF8 and the ubiquitous transcription factor IRF3. Knockdown of IRF8 in monocytes abrogated IFN-β transcription, whereas reintroduction of IRF8 into the IRF8−/− 32Dcl3 murine myeloid cell line reinstated IFN-β transcription. Moreover, we provide evidence that IRF8 constitutively binds to the ETS/IRF composite element of the IFN-β promoter region together with PU.1 in vivo. Furthermore we uncovered a requirement for IRF3, a master regulator of IFN-β production, as a previously un-indentified interaction partner of IRF8. We mapped the protein-protein interacting regions of IRF3 and IRF8, and found that their interaction was independent of the DNA-binding domain and the IRF association domain of IRF8 and IRF3, respectively. Therefore, we propose a model for the rapid induction of IFN-β in monocytes, whereby IRF8 and PU.1 form a scaffold complex on the IFN-β promoter to facilitate the recruitment of IRF3, thus enabling rapid IFN-β transcription.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.