Abstract

Members of the IFN regulatory factors (IRFs) family are transcriptional regulators that play essential roles in the homeostasis and function of the immune system. Recent studies indicate a direct involvement of some members of the family in the development of different subsets of dendritic cells (DC). Here, we report that IRF-1 is a potent modulator of the development and functional maturation of DC. IRF-1-deficient mice (IRF-1(-/-)) exhibited a predominance of plasmacytoid DC and a selective reduction of conventional DC, especially the CD8alpha(+) subset. IRF-1(-/-) splenic DC were markedly impaired in their ability to produce proinflammatory cytokines such as IL-12. By contrast, they expressed high levels of IL-10, TGF-beta, and the tolerogenic enzyme indoleamine 2,3 dioxygenase. As a consequence, IRF-1(-/-) DC were unable to undergo full maturation and retained plasmacytoid and tolerogenic characteristics following virus infection ex vivo and in vivo. Accordingly, DC from IRF-1(-/-) mice were less efficient in stimulating the proliferation of allogeneic T cells and instead, induced an IL-10-mediated, suppressive activity in allogeneic CD4(+)CD25(+) regulatory T cells. Together, these results indicate that IRF-1 is a key regulator of DC differentiation and maturation, exerting a variety of effects on the functional activation and tolerogenic potential of these cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.