Abstract

BackgroundFoot-and-mouth disease virus (FMDV) possess a positive sense, single stranded RNA genome. Internal ribosomal entry site (IRES) element exists within its 5′ untranslated region (5′UTR) of the viral RNA. Translation of the viral RNA is initiated by internal entry of the 40S ribosome within the IRES element. This process is facilitated by cellular factors known as IRES trans-acting factors (ITAFs).Foot-and-mouth disease (FMD) is host-restricted disease for cloven-hoofed animals such as cattle and pigs, but the factors determining the host range have not been identified yet. Although, ITAFs are known to promote IRES-mediated translation, these findings were confirmed only in cells derived from FMDV-insusceptible animals so far.We evaluated and compared the IRES-mediated translation activities among cell lines derived from four different animal species using bicistronic luciferase reporter plasmid, which possesses an FMDV-IRES element between Renilla and Firefly luciferase genes. Furthermore, we analyzed the effect of the cellular factors on IRES-mediated translation by silencing the cellular factors using siRNA in both FMDV-susceptible and -insusceptible animal cells.ResultsOur data indicated that IRES-mediated translational activity was not linked to FMDV host range. ITAF45 promoted IRES-mediated translation in all cell lines, and the effects of poly-pyrimidine tract binding protein (PTB) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) were observed only in FMDV-susceptible cells. Thus, PTB and 4E-BP1 may influence the host range of FMDV.ConclusionsIRES-mediated translation activity of FMDV was not predictive of its host range. ITAF45 promoted IRES-mediated translation in all cells, and the effects of PTB and 4E-BP1 were observed only in FMDV-susceptible cells.

Highlights

  • Foot-and-mouth disease virus (FMDV) possess a positive sense, single stranded RNA genome

  • Like FMDV, poliovirus (PV) and encephalomyocarditis virus (EMCV) belonging to the Picornaviridae family, and hepatitis C virus (HCV) belonging to the Flaviviridae family, possesses a virus-specific Internal ribosomal entry site (IRES) element within the 5′5′ untranslated region (UTR), and virus proteins are synthesized by IRESmediated translation [5, 6]

  • To analyze whether the host range of FMDV is determined by its IRES-mediated translation or not, we evaluated and compared IRES-mediated translation activities among the cell lines derived from different animal species, including both host and non-host animals

Read more

Summary

Introduction

Foot-and-mouth disease virus (FMDV) possess a positive sense, single stranded RNA genome. Internal ribosomal entry site (IRES) element exists within its 5′ untranslated region (5′UTR) of the viral RNA. Translation of the viral RNA is initiated by internal entry of the 40S ribosome within the IRES element. This process is facilitated by cellular factors known as IRES trans-acting factors (ITAFs). Foot-and-mouth disease (FMD) is a highly contagious infectious disease in cloven-hoofed animals such as cattle, pigs, and other related species [1]. FMDV possesses an internal ribosomal entry site (IRES) element within the 5′ untranslated region (5′UTR), and virus proteins are synthesized by IRES-mediated translation [1, 4]. FMDV Lpro can enhance translation driven by all picornavirus IRESs, even after inactivation of eIF2 by phosphorylation [15]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call