Abstract

Contact sensitizers may interfere with correct protein folding. Generation of un-/misfolded proteins can activate the IRE-1 or PERK signaling pathways initiating the unfolded protein response (UPR) and thereby determine inflammatory immune responses. We have analyzed the effect of sensitizers with different potencies on the induction of UPR activation/inhibition and the subsequent generation of a pro-inflammatory micromilieu in vitro as well as the effect of UPR modulation on the inflammatory response in the murine contact hypersensitivity (CHS) in vivo. Semi-quantitative and quantitative PCR, fluorescence microscopy, ELISA, NF-κB activation and translocation assays, DC/keratinocyte co-culture assay, FACS, and in vivo CHS experiments were performed. Sensitizers and irritants activate IRE-1 and PERK in murine and human keratinocytes. Synergistic effects occur after combination of different weak sensitizers / addition of irritants. Moreover, tolerogenic dinitrothiocyanobenzene can be converted into a strong sensitizer by pre-activation of the UPR. Blocking UPR signaling results in decreased NF-κB activation and cytokine production in keratinocytes and in activation marker downregulation in a HaCaT/THP-1 co-culture. Interestingly, not only systemic but also topical application of UPR inhibitors abrogates CHS responses in vivo. These observations highlight an important role of the UPR in determination of the inflammatory response in vitro and in vivo further underlining the importance of tissue stress and damage responses in the development of ACD and provide mechanistically based concepts as a basis for the development of new therapeutic approaches to treat allergic contact dermatitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.