Abstract

Here, an Ir/Zn-cocatalyzed atroposelective [2+2+2] cycloaddition of 1,6-diynes and ynamines was developed, forging various functionalized C─N axially chiral indoles and pyrroles in generally good to excellent yields (up to 99%), excellent chemoselectivities, and high enantioselectivities (up to 98% enantiomeric excess) with wide substrate scope. This cocatalyzed strategy not only provided an alternative promising and reliable way for asymmetric alkyne [2+2+2] cyclotrimerization in an easy handle but also settled the issues of previous [Rh(COD)2]BF4-catalyzed system on the construction of C─N axial chirality such as complex operations, limited substrate scope, and low efficiency. In addition, control experiments and theoretical calculations disclosed that Zn(OTf)2 markedly reduced the barrier of migration insertion to significantly increase reaction efficiency, which was distinctly different from previous work on the Lewis acid for improving reaction yield through accelerating oxidative addition and reductive elimination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.