Abstract
The structure and dynamics of the highly flexible side chain of (protonated) phenylethylamino neurotransmitters are essential for their function. The geometric, vibrational, and energetic properties of the protonated neutrotransmitter 2-phenylethylamine (H(+)PEA) are characterized in the N-H stretch range by infrared photodissociation (IRPD) spectroscopy of cold ions using rare gas tagging (Rg = Ne and Ar) and anharmonic calculations at the B3LYP-D3/(aug-)cc-pVTZ level including dispersion corrections. A single folded gauche conformer (G) protonated at the basic amino group and stabilized by an intramolecular NH(+)-π interaction is observed. The dispersion-corrected density functional theory calculations reveal the important effects of dispersion on the cation-π interaction and the large vibrational anharmonicity of the NH3(+) group involved in the NH(+)-π hydrogen bond. They allow for assigning overtone and combination bands and explain anomalous intensities observed in previous IR multiple-photon dissociation spectra. Comparison with neutral PEA reveals the large effects of protonation on the geometric and electronic structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.