Abstract

Mesoporous structure of silica is determined by the type of template, but the introduction of functional groups during the synthesis has additional influence. The structure of SBA-15 may be violated by the introduction of long functions, such as ≡Si(CH2)3NHC(=S)NHC2H5. These ethylthiocarbamidepropyl groups can form complexes with metal ions in thiol or thione tautomeric forms. We determined that the 2D hexagonal p6 mm structure is preserved for SBA-15 with thiourea groups at maximal TEOS:trifunctional silane ratio (mol) = 10:2, which was confirmed by TEM and by the presence of an intense reflex in the small-angle region of diffractograms of the final product. It was shown that the obtained sorbents possess high kinetic characteristics. The experimental data fit pseudo-second-order kinetic equation, but the rate constants depend on the content of functional groups in the surface layer. Template Pluronic P-123 defines the porosity of functional mesoporous silica materials even at increasing content of trifunctional silane in the initial solution. Infrared spectroscopy analysis showed that thione form of thiourea ligand is prevalent on the surface of pores of mesoporous samples. However, during the sorption of silver(I) ions, there are both thione and thiol forms on the surface. Thione form is transformed into thiol with increasing concentration of mercury(II) ions in the sorption solution. Adsorption experiments showed that the SBA-15 silicas functionalized with ethylthiocarbamidepropyl groups had high selectivity for silver(I) ions and could concentrate Ag(I) ions from metal ions mixture at pH ~ 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call