Abstract
Guinea pig pancreatic lipase-related protein 2 (GPLRP2) is an interesting model enzyme that can hydrolyze a large set of acylglycerols in vitro but displays however some selectivity depending on the supramolecular structure of substrate and the presence of surfactants like bile salts. We showed that GPLRP2 hydrolyzes 1,2-dipalmitoyl phosphatidylcholine (DPPC) present in mixed micelles with sodium taurodeoxycholate (NaTDC) but not in multilamellar (MLV) and large unilamellar (LUV) vesicles of DPPC. After characterization of these lipid aggregates by dynamic light scattering (DLS), the discriminative recognition of DPPC in DPPC/NaTDC micelles versus MLV and LUV by an inactive variant (S152G) of GPLRP2 to avoid the effect of substrate hydrolysis was investigated using Fourier transform infrared spectroscopy (FTIR). IR spectra were recorded after hydrogen/deuterium exchange, at pD 6 and various temperatures to study phase transitions. We analyzed the methylene asymmetric stretching (ν(CH2)as), the carbonyl stretching (ν(CO)) and the composite polar head-group vibration bands, first to characterized differences in DPPC micelles and vesicles, and second to estimate the degree of interaction of GPLRP2 S152G with phospholipid. Our results indicate that a significant interaction between GPLRP2 S152G and DPPC is only observed when NaTDC is added to the system to form micelles and this can be explained by the different organization of DPPC in mixed micelles compared to lamellar vesicles (higher hydration of polar head, higher mobility of alkyl chains) that favors GPLRP2 penetration into the phospholipid layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.