Abstract

Abstract A new approach of the combined effects of quantum direct and indirect dampings (within the adiabatic approximation) on the infrared lineshapes of the ν X–H stretching mode of simple and single weak H-bonds is proposed. The approach is based on our precedent model dealing only with bare weak H-bonds [B. Boulil, O. Henri-Rousseau , P. Blaise Chem. Phys. 126 (1988) 263; B. Boulil, J.-L. Dejardin, N. El-Ghandour, O. Henri-Rousseau, J. Mol. Struct. (Theochem) 314 (1994) 83]. As in this initial model, the indirect relaxation of the H-bond bridge is described by the aid of the driven damped quantum harmonic oscillator model [W. Louisell, L. Walker, Phys. Rev. 137 (1965) 204]. It is shown that the Hamiltonian characterizing the driven damped quantum harmonic oscillator may be obtained in a non-Hermitean reduced form, allowing, contrarily to the initial approach, the possibility of generalizations to more complex situations than those of bare H-bonds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call